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Partially invariant solutions of a class of nonlinear 
Schrodinger equations 

L Martinat, G Solianit and P WinternitzS 
t Dipartimento di Fisica dell'Universitl and Sezione INFN di Lecce, 73100 Lecce, Italy 
t Centre de Recherches Mathtmatiques Univenitt de Mantrtal, CP 6128-A Mantrtal, 
Qutbec, Canada H3C 3J75 and Sezione INFN dell'universitl di Lecce, 73100 Le=, Italy 

Abstma. Partially invariant solutions of a general class of nonlinear Schrodinger equations, 
involving four arbitrary functions of the modulus p of the solution and its derivative px, 
are obtained. The modulus p ( 5 )  is assumed to depend an a symmetry variable 6, whereas 
the phase o(x, I) depends on both independent variables. Both p and w are obtained 
explicitly, as are the conditions on the coefficients in the equation, necessary for such 
solutions to exist. 

1. Introduction 

The purpose of this article is to study partially invariant solutions of a rather general 
class of nonlinear Schrodinger equations (NLSES), namely 

iu, + u, = (F+ iK)u + (G+iL)u, (1.1) 

where u(x ,  f )  is a complex function of two real variables and F, K ,  G and L are real 
functions of )U) and )ulx. 

Partially invariant solutions of systems of partial differential equations (PDES) were 

were initiated in a recent article [Z], devoted to partially invariant solutions of complex 
nonlinear Klein-Gordon ( E  = -1)  or Laplace ( E  =+1) equations of the form 

intredllccd by Ovsi.n.ikov s0me time 2ga [!!. .A system3tic st??dy of scch sn!??tians 

The general theory of partially invariant solutions has been outlined for arbitrary 
systems of PDES [1,2]. In particular, a definition was given in [2], distinguishing 
partially invariant solutions from invariant ones. In order to make this article readable 
on its own, we give a very brief summary of the relevant concepts. 

Let us consider a system of N PDES 

Let D he the symmetry group of equation (1.3), i.e. a local Lie group of local point 
transformations, leaving the equations (1.3) invariant. Let V0G 3 be a subgroup of 3. 

5 Permanent address. 
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The subgroup %,, acts on the space X x U of independent and dependent variables 
and sweeps out certain orbits in this space. The generic orbits are the level sets of a 
set of invariants 

If we have K 2 q and if the Jacobian 

J ( 1 , .  . . I K )  
J ( u , .  . . u9) J =  

has rank q, then the dependent variables ui can be expressed in terms of 9 invariants 
1- = F,, a = 1,. . . , q. These can then be viewed as functions of the remaining K - 9 < p  
invariants tl,. . . , & - 9  

( 1.6) 

Substituting ui back into equation (1.3) we obtain a reduced system of equations 
for I?((). The solutions of this system are called ‘invariant solutions’ and they are 
invariant under the subgroup go. 

ut = W X I , .  . . , xp. F,(5), . . . 1  FJ6)) i = 1, . . . , 9. 

If the rank condition (1.5) is not satisfied and we have 

r ankJ=q‘<q  (1.7) 

we can express only q‘ variables U; in terms of invariants. The remaining functions 
uy.+, , . . . , uq depend on all the variables x I ,  . . . , x,,. Substituting back into the original 
system we obtain a mixed system of equations in which U,. . . . , u q , ,  depend on fewer 
variables than the remaining unknowns. The system is in general inconsistent and 
compatibility conditions must be imposed. If solutions exist that are not invariant 
under go, or some other subgroup Go of the symmetry group Y?, we obtain ‘partially 
invariant solutions’. 

As a matter of fact, we reserve this name for solutions that are not invariant under 
any subgroup of the symmetry group 3. To our knowledge, the first examples of such 
‘genuinely’ partially invariant solutions were obtained in [2]. In particular, it was 
shown that such solutions exist for any functionf(lu1) in equation (1.2) with E = -1, 
but only for very special functions f(lu1) for E = + I .  

Our aim is to establish conditions on the functions F, K ,  G and L, under which 
genuinely partially invariant solutions exist, and then to obtain these solutions. We 
emphasize that from the physical point of view partially invariant solutions are just 
as useful as invariant ones. In particular, they can be used to satisfy different types of 
boundary conditions than the invariant ones. 

A sizable literature exists on NLSES of the form (1.1). In particular Clarkson recently 
[ 5 ]  applied a direct method of dimensional reduction, due to Clarkson and Kruskal 
[6] to a special case of (1.1) with 

F =  - ( a ,  + b j ) l U I :  - ~ 1 ~ 1 ~ -  dluI2 

K =  -(aZ+bZ)Iu1: 

G =  -a,lu12 

L=-a21u12 

where a,, a2,  b,, b2, E and d are real constants. 
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This special case includes well known integrable equations, such as the cubic NLSE 

[7] ( a l = a 2 = b , = b 2 = c = O , d # 0 ) , a n d v a r i o u s d e r i v a t i v e ~ ~ ~ ~ J ( e . g . a l = b , = b 2 = ~ =  
d = 0, a2 # 0) 181. It also includes equations linearizable by contact transformations, 
such as the Eckhaus equation (a ,  = a2 = b, = d = 0, c = fb:) [9]. The non-integrable 
quintic NLSE is included for ai = bi = 0, c # 0. Its symmetries and group invariant 
solutions have been studied in detail elsewhere [lo, 111. 

Various equations of the form (1.1) and in particular (1.8) have been derived in 
the context of nonlinear optics [12-15], nonlinear water waves [16,17] and other 
applications ([SI contains an extensive bibliography). 

In section 2 we discuss the symmetries of equation (1.1) and determine the sub- 
groups, providing invariant and partially invariant solutions. In the generic case 
equation (1.1) is only invariant under space and time translations and changes of 
phase, generated by PI,  Po and W respectively. 

In section 3 we show that the subgroup corresponding to [P,, W} provides partially 
invariant solutions for any function F, K and L, but their existence requires 

G(IuI,lul,=O)=O. 

The subalgebra {Po,  W } ,  as shown in section 4, also leads to partially invariant 
solutions. Their existence imposes constraints on the coefficients of equation (1.1). 

2. Symmetries of the equation 

Partially invariant solutions exist only for systems of P D E ~ .  Equation ( 1 . 1 )  will be 
considered as a system of two real PDES. We put 

u(x, t)=p(x, t )  o s p ,  o s  0 < 2.7r 

and rewrite (1.1) as 
( 2 . 1 ~ ~ )  

(2.lb) 

Equation (1.1) (and the system (2.1)) is invariant for any F, K ,  G and L, under 
space and time translations and under the addition of a constant to the phase. The 
corresponding Lie algebra (symmetry algebra) is the Abelian algebra generated by 

Po=a, P, = J, W=J,. (2.2) 

In special cases the symmetry algebra can be larger. For instance, it includes Galilei 
transformations 

B =  tJ,tfxJ, for G = L = O  (2.3) 

and dilations 

D = 2 t d , i x J x t p p J ,  

if we have 

F(p  ep*, px 

K(p  epA, px = e-2*K(p,px) 

G(p ep*, px = e-”G(p, px) 
~ ( p  ep’, px e(p-’)A) = e-”L(p, p d .  

= e-**F(p , Px ) 

(2.4~1) 

(2.46) 
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We shall only make use of the generic symmetries Po, P, and W. Subalgebras 

1. P , + a W  

leading to invariant solutions are the following. 

P = P ( t )  w = a x +  g( t )  (2.5) 

2.  P ,+aW 

P = P i x )  w = a t + 4 ( x )  

3. p , + b P , + a W , b # O  

@.6j 

P = P W  o = a t + d ( C )  .$ = x - bt. (2.7) 

The functions p and 4 in each case satisfy coupled systems of ordinary differential 

Subalgebras that can lead to partially invariant solutions are 
equations: 

{PI ,  W )  {Po, WI {Po+bPi,  W) b # 0. (2.8) 

3. The Subalgebra {PI, W} 

The solutions have the form 

P = P ( f )  w = W ( X ,  1 )  w, # const. 

Equation (2.1) can be rewritten as 

e,. = -F + Lex - & 
--I 

(3.1) 

( 3 2 )  

(3.3) PI 

P 
ox, - Gw, = K 

Let us consider the case G # 0 and G = 0 separately. 

(a) GZO 
Equation (3.3) is a linear inhomogeneous equation for w with coefficient independent 
of x. Its general solution is 

(3.4) 

Substituting (3.4) in (3.2) we obtain terms proportional to 
independent of x. Equating coefficients of like terms, we find 

exo. x eG, x and 

and we obtain an invariant solution of the form (2 .5)  

(b) G=O 
The solution of equation (3.3) is 

x 2 + a ( f ) x + p ( t ) .  

(3.5) 

(3.6) 
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We substitute into (3.2) and set equal coefficients of x2, x and 1. We obtain an equation 
for p. namely 

and expressions for a ( t )  and P ( t ) :  

a( t )  = -+- L ( p ,  0) d t  
t 21 ‘ I  

(3.7) 

(3.8) 

We thus have a solution 

P = P ( t ,  CI) 

4t 

( 3 . 1 0 ~ )  

(3.10b) 

where p( t ,  e , )  is a solution of equation (3.7), P ( t )  is given by (3.9) and e , ,  a. and Po 
are constants. 

In the special case when L(p,  p x )  satisfies L(p,O)=O equation (2.1) is Galilei 
invariant. The algebra B +  aW then leads to an invariant solution of the form 

x2 x 
w = - + a - + + ( r ) .  

4t t P = P ( t )  (3.11) 

We conclude that (3.10) represents a Galilei invariant solution for L(p,O)=O and 
a genuinely partially invariant one for L(p ,  0) # 0. 

Now let us restrict to the particular case (1.8), studied by Clarkson [SI. We must 
have G = 0, hence a,  = 0; moreover we have K = 0. Equations (3.6), . . . , (3.10) yield 
the partially invariant solution 

The solution (3.12) does fit into the scheme of ‘direct method reductions’ with the 

The partially invariant solution ( 3 . 1 0 ~ )  is obtained quite explicitly for any choice 
ansatz of [ 5 ] .  

of the coefficients F, K and L in the NLSE ( l . l) ,  as long as we have G(p, O ) = O .  

4. The subalgebra (Po ,  W) 

4.1. The partially invariant solutions 

The solutions have the form 

P = P ( X )  o = w ( x ,  1 )  w ,  # const. 
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Equation (2.lb) can be solved for ox and we have 

w, = a( f )A(x)+B(x)  

where A(x) and B(x) satisfy 
(4.2) 

(4.3) 

(4.4) 

We then obtain mz from equation ( 2 . 1 ~ )  as 

+ L(aA+ B) - a2A2-2aAB- B2. (4.5) 
P 

Compatibility of (4.2) and (4.5) then implies 

ff =fAn2+pa+ U A, p, Y = const ( A Z O )  (4.6) 

A, = const (4.7) 
X 

A 
4 

A =  --x 

and we obtain an expression for the phase 

w(x ,  I ) =  -- aA+p x AAo 8 - - / ad f+c f -21nx+-  4 2 ‘ 5  Ldx+wo.  (4.8) 
8 

Integrating (4.6) we obtain more explicit expressions for the phase. We put 

A = p 2 - ~ ~ ~  (4.9) 

and obtain 

1. A = O  

o(x,f)=-+-In xz An (;) + ( c+- hip) f+- ; j L d x + o n  (4.1 On) 
4r 4 

2. A > O  

o(x,t)=-x2tanh 8 (i -&r ) +-In $ [ c o s h ~ ~ f ) ] + ( ~ + ~ ) r + ~ j L d x + w n  

(4.10b) 

3. A < O  

We have dropped a constant when integrating equation (4.6) and hence I in (4.10) 
can be replaced by f - r, everywhere. For 1, real this constant is recovered by a time 
translation, i.e. a symmetry transformation. However, in the case of equation (4.10b) 
we can also take io= - ( i m / a )  and redefine the constant wo to obtain a different 
expression for w(x, f )  in which the functions tanh(v%f/2) and COSh(v%/2) are replaced 
by cotb(v‘&/2) and sinh(V%r/2), respectively. 



Nonlinear Schrodinger equations 443 1 

By using the expressions given in the equation (4.7), equations (2.1) also imply 
that p is a solution of the equations 

(4.11) 

Differentiating equation (4.11) with respect to x, we obtain an equation involving 
pu. Equations (4.11). . . (4.13) involve consistency conditions for the functions F, G, 
K and L, necessary for partially invariant solutions to exist. 

4.2. Compatibility conditions on the coeficients in the NLSE 

Two cases will be considered separately. 
1 .  2 - p G P , = 0 .  
We then have 

G =-+ 2PX H ( p )  H,#O (4.14) 
P 

and equation (4.11) reduces to a functional equation for p :  

(4.15) 

Equations (4.12) and (4.13) then determine K and F in terms of two free functions 
H ( p )  and L(p ,p , ) .  We have 

3 

K = i [ L p x ( g )  ( 2 H : - H H , ) - L  - + L  H 2  (::: -- H ) + A o H ’ )  
&? HP 

(4.16) 

L2 A A: /LAO H 2  -- - C. 
8 F = $ ( :)3( 3pH: - pHH,,, - 2 HH, ) + - - - -- 

4 16HZ 16 
(4.17) 

Since F, K and L depend on both p and px there is a certain freedom in equations 
(4.14), (4.16) and (4.17). A consequence of (4.15) is 

H’ 

HP 
P x  = -- (4.18) 

and we can use (4.18) to replace p x  in the expressions for G, K and L. Conversely, 
Hp can be replaced anywhere, using (4.18). Thus, we can replace (4.14) by 

G = - 2 H 2  -+H. 
PHO 

(4.19) 

2. 2-pG,#0.  
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This time p must be determined from the first order ODE (4.11) and (4.12), (4.13) 
imply: 

(4.20) 

(4.21) 

where G ( p ,  p x )  and L(p, p x )  are arbitrary (GPx # 2p-l) 

4.3. Special cases 

We shall now extract several particularly simple special cases from the general formula. 
We first consider the case 2 - pGoz  = 0. 
1. L = Lo, H = Hop", n f 0. 
Equations (4.16), (4.17) and (4.19) in this case imply 

K = K ~ ~ ~ "  + K , ~ "  G =-+ 2PX Hopn 

where KO, F l ,  F2 and Fo are constants. The solution has modulus 

F = Frp2" + F2p-2n + Fa (4.22) 
P 

The phase of the solution satisfies (4.8) (and hence (4.10)). 
The constants Ho(#O), Lo,  K O ,  Fa and F2 are arbitrary, but we must have 

The constants A, /A, v, ho and c, figuring in the phase o(x, t )  satisfy 

(4.23) 

(4.25) 

We see that G and K are polynomials for n positive integer, however F is not, 
unless we set F2 =O. In this particular case equation (1.1) has an additional symmetry, 
namely dilations combined with a time dependent change of phase. The generator of 
these transformations is 

(4.26) 

In this particular case (F2 = 0) the obtained partially invariant solution is actually 

1 
D = 2ta,+xa. -- p a p  - 2 ~ ~ t a , .  

n 

invariant under the group generated by E + a F .  
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For F, # 0 equation (1.1) is invariant only under the group generated by { P o ,  P I ,  W )  

2. K = 0, G = ( ~ P , / P )  + (P’ /P;) .  
In this case equations (4.19), (4.16) and (4.17) imply 

of (2.2). Hence in this case we have a genuinely partially invariant solution. 

F = F lp4+  F2p-*+fLolp2+ Fo+:l2 

where po#O, Lo, Fo, Fl and F2 are constants and l ( f )  is an arbitrary function. 
The solution is given by 

Po P=x 
and equation (4.8), respectively. 

The constants po, Lo, Fo and F2 are free but Fl must satisfy 

(4.27) 

(4.28) 

The constants involved io the phase o(x, 1 )  satisfy 

(4.30) 
L 1 *  
8 

C =  -Fo--poLo. 

If we set F2 = 0 and l ( 5 )  = 0, our solution reduces to an invariant one. In all other 

Now let us consider an example of the case when we have 2 - pG, # 0. 
cases it is a genuinely partially invariant solution. 

G = B  -+1 e-AP(A,B=const,AB#O) L=Lo. (4.31) 
3.  cp 1 
From (4.1 1 )  we obtain 

1 
A p =-In Ex (4.32) 

so that we can express px in terms of p. The expressions (4.20) and (4.21) simplify to 

The constants in the phase (4.8) satisfy 

(4.33) 

(4.34) 

We mention that NLSES with exponential nonlineanties in the coefficients do occur 
in physical contexts [15]. 
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5. The subalgebra {P,+aP,, W} 

The subalgebras {Po+aP,, W )  for a ZO is conjugated to {Po, W )  by a Galilei trans- 
formation. Hence it is of interest to consider this subalgebra only if the equation (1.1) 
is not Galilei invariant, i.e. if we have GL # 0. 

Even in this case the results are very similar to those of section 4. A partially 
invariant solution will in this case have the form 

P = p ( 5 )  0 = 4 5 1 )  f = x - at. 
The reduced system is 

(5.1) 

(5.2a) 

PO,, + (2ps - Gp)w, = Kp + (L+a)w,. (5.26) 
The system (5 .2)  differs from the corresponding one for the subalgebra {Po,  W} 

only by the fact that L is replaced by L+a and x by t. This is the only modification 
in the entire analysis. 

Thus p ( 5 )  is obtained by solving the equation 

and w ( x ,  t )  is given by (4.10) with 
x +  t = x - a t  L+ L t  a. 

(5.3) 

(5.4) 
Compatibility must be considered for 2 - pG,, = 0 and 2 - pGpf # 0 separately and 

The particular examples of subsection 4.3 also carry over and in this case we obtain 
the results of section 4 pertain with the appropriate replacements (5.4). 

travelling wave solutions. 

6. Conclusions 

We have shown that partially invariant solutions, when they exist, are quite easy to 
obtain for a very general class of N L S E ~  (1.1). The existence of such solutions imposes 
constraints on the functions F, G, K and L. The form of these constraints depends 
on the chosen subgroup of the symmetry group. Thus, for the subgroup {P,, W) we 
have obtained the condition G=O. For {Po,  W) we have (4.14), (4.16) and (4.17), or 
(4.20) and (4.21). 

the 'non-classical method'of Bluman and Cole [ 181, interpreted in terms of 'conditional 
symmetries' [19]. 

The symmetry algebra of the system (2.1) is realized by vector fields of the form 
(6.1) 

where 6, T, 6, and $2 are functions of x, r, p and o, to be determined from the condition 
that the second prolongation [3,4] pr"'6 should annihilate the equations (2.1) on their 
solution set. Conditional symmetries 1191 annihilate the equations (2.1) only on a 
subset of solutions, namely those that also satisfy the conditions 

!t is instndctive to campzre pr&?!!y iavrdrat sa!..tions with sa!.tioas abtrined by 

6 = fa, + ?a, + &ap + +>au 

(6.2a) 
(6.26) 
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A generalization of partially invariant solutions would be obtained by allowing o ( x ,  I) 
to depend on both x and 1, but requesting that p be a function of one variable 5, 
obtained from a conditional symmetry. An investigation of this possibility is in progress. 
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